# Molecular Electronic Devices

Solids: From Bonds to Bands Atom E Molecule Levels Bond Band 1-D Solid 1 In the spirit of bottom-up theory, we will identify minimal models to create metallic or semiconducting bands

A simple 1-D chain of atoms with 1 electron/atom will yield a metal A chain of dimers with 1 electron/atom will yield a semiconductor A real 3D solid will involve dimerization of atoms or orbitals 2 How would we get multiple bands leading to a semiconductor? 3 Dimerized Chain

-t1 H= -t2 -t1 -t2 -t1 -t1 -t2 -t2 -t1

-t1 -t2 How would we solve this? ce again, lets do this numerically for various sized H 4 Eigenspectra If we keep the ts different, two bands and a bandgap emerges N=2 4 6 8 10 20 50 500 t1=1, t2=0.5

5 Dimerized Chain -t1 = -t1 -t1 = 0 0 t2 0 H= -t2

-t1 -t2 -t1 -t1 -t2 -t2 -t1 -t1 -t2 Take two atoms as one unit 6 Dimerized Chain -t1

= -t1 -t1 = 0 0 t2 0 H= -t2 -t1

- - Take two atoms as one unit 7 Dimerized Chain

- - H= - - - - 8 Solving for the dispersion - - - - - -

1 2 .. . 1 2 .. . n-1 n-1 n n+1 ..

. = E n n+1 .. . Lets look at the nth row [n] [n+1] [n-1] = E[n] Periodic bcs imposed Try [n] = [0]eikna This gives eika +e-ika = EI2x2 = -t1 -t1 = 0 0 t2 0

9 Solving for the dispersion Substituting expressions for , etc gives E -t1-t2eika -t1-t2e-ika E- =0 Eigenvalues: E =

t12 + t22 2t1t2cos(ka) 10 Solving for the dispersion Conduction Band E E+ 2t2 2(t1-t2) Valence

Band E- 2t2 ka E = t12 + t22 2t1t2cos(ka) 11 Solving for the dispersion E+ E

2t2 2(t1-t2) E- 2t2 ka e now have a material with a bandgap o we just need a lattice with a basis to get multibands 12 Solving for the dispersion

E+ E 2t2 2(t1-t2) E- 2t2 ka If parameters chosen properly, EF can lie in the gap (e.g. 1 electron per dimer atom) No states around the Fermi energy here 13

Semiconductor: Lattice + Basis We need a lattice with a basis (Note that we could have also made the onsite energies oscillate, and make that oscillation periodic but infrequent Wells and barriers) 14 Atomic levels Bands Deeper potential due to nuclear attraction effectively makes intraatomic box width > interatomic separation, so that s-p separation < bonding-antibonding split 15

One way to create oscillations + + + Periodic nuclear potential (Kronig-Penney Model) Simpler abstraction + Solve numerically

Un=Ewell/2[sign(sin(n/(N/(2*pi*periods))))+1]; Like Ptcle in a box but does not vanish at ends Matlab code

hbar=1.054e-34;m=9.1e-31;q=1.6e-19;ang=1e-10; Ewell=10; alpha0=sqrt(2*m*Ewell*q/hbar^2)*ang; period=2*pi/alpha0; periods=25;span=periods*period; N=505;a=span/(N+0.3); t0=hbar^2/(2*m*q*(a*ang)^2); n=linspace(1,N,N); Un=Ewell/2*(sign(sin(n/(N/(2*pi*periods))))+1); H=diag(Un)+2*t0*eye(N)-t0*diag(ones(1,N-1),1)-t0*diag(ones(1,N-1),-1); H(1,N)=-t0;H(N,1)=-t0; [v,d]=eig(H); [d,ind]=sort(real(diag(d)));v=v(:,ind); % figure(1) % plot(d/Ewell,'d','linewidth',3)

% grid on % axis([1 80 0 3]) figure(2) plot(n,Un); %axis([0 500 -0.1 2]) hold on for k=1:N plot(n,real(v(:,k))+d(k)/Ewell,'k','linewidth',3); hold on axis([0 500 -0.1 3]) end Blochs theorem (x) = eikxu(x) u(x+a+b) = u(x) (x+a+b) = eik(a+b)(x)

Plane wave part eikx handles overall Xal Periodicity Atomic part u(x) handles local bumps Energy bands emerge E/Ewell ~1.7-2.7

~1-1.35 ~0.35 Kronig-Penney Model N domains 2N unknowns (A, B, C, Ds) Usual procedure Match , d/dx at each of the N-1 interfaces (x ) = 0 Allowed energies appear in bands ! Like earlier, but folded into -/(a+b) < k < /(a+b)

Number of states and Brillouin Zone Only need points within BZ (outside, states repeat themselves on the atomic grid) The overall solution looks like More accurately... Why do we get a gap? Let us start with a free electron in a periodic crystal, but ignore the atomic potentials for now At the interface (BZ), we have two counter-propagating waves eikx, with k = /a, that Bragg reflect and form standing waves

E Its periodically extended partner -/a /a k Why do we get a gap? + ~ cos(x/a) peaks at atomic sites + -

- ~ sin(x/a) peaks in between E Its periodically extended partner -/a /a k Lets now turn on the atomic potential The + solution sees the atomic potential and increases its energy The - solution does not see this potential (as it lies between atoms)

Thus their energies separate and a gap appears at the BZ This happens only at the BZ where we have standing waves + |U0| -/a /a k Nearly Free Electrons What is the real-space velocity? Superposition of nearby Bloch waves (x) Aei(kx-Et/) + Aei[(k+k)x-(E+E)t/]

Aei(kx-Et/)[1 + ei(kx-Et/)] Fast varying components Slowly varying envelope (beats) k+k time k Band velocity (x) Aei(kx-Et/)[1 + ei(kx-Et/)] Envelope (wavepacket) moves at speed v =

1/(E/k) i.e., Slope of E-k gives real-space velocity E/k = Band velocity v = 1/(E/k) Slope of E-k gives real-space velocity This explains band-gap too! Two counterpropagating Flat waves give zero net group velocity at BZ

bands Since zero velocity means flat-band, the free electron parabola must distort at BZ Flat bands Effective mass v = 1/(E/k), p = k F = dp/dt = d(k)/dt a = dv/dt = (dv/dk).(dk/dt) = 1/2(2E/k2).F 1/m* = 1/2(2E/k2) Curvature of E-k gives m* Real Materials more

complex 1. Many orbitals per atom 2. Multiple dimensions (3-D) Let us first recap the 1-D bandstructure, so we can see how to generalize it in 3-D. Being systematic helps !! 34 EP 1: Find period real space Summary of 1D bandstructure RR

== aa On occasion, this may need you to choose a multiatom or multiorbital basis EP 2: Find k-space periodicity (connecting equivalents points in k-space) a = 2 K x x x x -2/a 0 2/a

EP 3: Find BZ by bisecting nearest neighbor connectors. s gives the smallest zone in k-space for a non-repeating nd. In this case, its between /a and /a. x x 35 Summary of 1D bandstructure EP 4: Choose N allowed k-points by imposing periodic boundary conditions er N unit cells. For complex solids, we may need to choose specific directions. k = (n/N)K, where n=0,1,2,,N-1, and K=2/a

EP 5: Identify nearest neighbors and find Fourier transform of H terms er this range for each allowed k. Hn,n-1 Hnn Hn,n+1 Hk = [Hnn] + [Hn,n+1]eika + [Hn,n-1]e-ika b bands n-1 n n+1

ch [Hnn] has size bxb (b: # basis sets) EP 6: Find eigenvalues E(k). This gives bands for each k within the BZ. x x . ..x .. .. . x -/a 0 /a x x 36

Summary of 1D bandstructure TEP 6: Use this bandstructure E-k to calculate DOS D(E), fit parabolas o extract effective mass m*, etc. These are then used for calculating lectronic properties like transmission, I-V, etc. 37

## Recently Viewed Presentations

• Cardiac Muscle as a Syncytium At each intercalated disc the cell membranes fuse with one another to form permeable gap junctions that allow rapid diffusion of ions. The heart actually is composed of two syncytiums: the atrial syncytium and the...
• Wal-Mart Argentina: Taking "Everyday Low Prices" Below the Equator Luciene De Paulo Gabriel Szulik Jennifer Pogue Esther Montiel Andy Martin Agenda Wal-Mart's Background and International Expansion Argentina: Analysis and Entry options DCF and Cost of Capital Discussion Recommendation Q &...
• Collaborateurs Guy Beauregard, MAPAQ Serge Dupond, MRC de Maskinongé Camille Caron, MAPAQ Jean-Pierre Hivon, Le groupe Envir-Eau-Sol inc Steeve Lampron, Syndicat des producteurs de porc de la Mauricie Raymond Leblanc, Fédération des producteurs de porc du Québec Patrrick Lupien, Syndicat...
• Jus Ad Bellum - right reasons for going to war. Just authority. Just cause. Just intention. Proportionality. Last resort. Reasonable chance of success. Comparative justice. Jus In Bello - right conduct within war. Discrimination. Proportionality. Fair treatment of PoWs. No...
• The History of Marketing "If you can use propaganda for war you can certainly use it for peace."- Edward Bernays. I am Edward Bernays, the man who developed Public Relations in the early 1900s.
• CENTRAL PROCESSING UNIT Written by: Gizem Gulsen INTRODUCTION The central processing unit is where all the calculations and logic operations take place. CPU performs data-processing operations. ... Model of Control Unit Registers A register is a group of flip-flops with...
• Show versus Tell Strategies Strategies writers use to SHOW what is happening include: describing the character's actions rather than just saying how he or she feels using action verbs using precise nouns and active verbs with strong modifiers (adjectives, adverbs,...
• Strong acids and bases are those that ionize completely in aqueous solution. They are also typically strong electrolytes. Weak. acids. and . bases. are those that . do not . ionize completely. in aqueous solution. They are also typically ....