Keeping First Responders and Receivers SafePersonal ...

Keeping First Responders and Receivers SafePersonal ...

Keeping First Responders and Receivers Safe Personal Protective Equipment for Responders James S. Spahr, RS, MPH Associate Director - Office for Emergency Preparedness & Response National Institute for Occupational Safety and Health Centers for Disease Control and Prevention Background: Why is Radiation a Concern? Loss/misuse of radiation sources Accident in radiation industry Nuclear Power Plant Terrorism threat Radiological dispersal device (RDD) Improvised nuclear device (IND) 2 Background: Public Health Functions in Preparedness and Response to Radiological Incidents Pre-event

Early-phase Early-phase: initial hours Intermediate phase: hours to days Late phase: days to months Adapted from IOM, 2008, DHS, 2008, and RAND, 2009 Intermediatephase Post-event Late-phase Pennsylvania Dept of Environmental Protection Roles for Responders Pre-event

dentify pre-existing radiation sources/baseline Conduct training and exercises Coordinate with response partners Early-phase Monitor indicators of a release Identify likely areas of contamination Provide public guidance Identify agent and characterize contaminated area Assess victim decontamination and medical needs Ensure critical Infrastructure safety Monitor responder exposures and health

Adapted from IOM, 2008, DHS, 2008, and RAND, 2009 Intermediate-phase Conduct epidemiologic investigation Provide emergency laboratory support Establish victim registry Monitor shelter and mass care conditions Ensure food and water safety Ensure animal safety (Veterinarians) Late-phase Manage contaminated fatalities Define re-occupancy criteria

Decontaminate facilities and resources Responsibilities Employer: Prior: 1. Establish & prioritized Admin controls, policies & procedures to control exposures 2. Provide health monitoring & surveillance program 3. Provide protective devices, PPE, monitoring equipment, & training/retraining During: 4. Supervise hot zone to ensure implementation of P&P 5. Provide Just-In-Time training 6. Arrange for dosimetry services 7. Facilitate worker compliance After: 8. Arrange for post-event health surveillance 9. Maintain & provide access to exposure records

Employee: 1. Accept S&H information & training 2. Follow regulations & procedures 3. Properly use monitoring equipment & devices 4. Cooperate with health surveillance and dose assessment programs 5. Report health/pregnancy status 6. Report circumstances that could affect the decision dose or safety compliance Incident Command: 1. Determine pre-established exposure levels 2. Establish protective actions that produce more good than harm 3. Ensure that responder exposure is optimized to achieve the lowest exposure under the circumstances

4. NCRP does not recommend a dose limit for responders exposure decisions should be made based on operational awareness and mission priorities Acute Response Determine that radioactivity/radiation is in the environment First responders Determine the radionuclide(s) and amount(s) Radiation strike team Estimate doses and geographic dose distribution Radiation strike team + state environment dept Determine need for (and implement) evacuation Radiation strike team + health dept + fire/police Determine additional incident needs Radiation strike team + Incident Commander Possible Radiation Scenarios:

Radiation-dispersal device (RDD) explodes at busy street corner: ~ 30 to 180 deaths. Radiation-exposure device (RED) concealed at high-traffic area: ~ 60 to 250 deaths and ~ 130 cases of radiation sickness needing treatment for 30 years. Effect on public behavior. Decontamination efforts for people and objects. Community recovery timeline: Months to years. Improvised nuclear device (IND), explosion 10 tons to 10 kilotons, in center of a city, few hundred to 100,000 deaths, number of hospitalizations not estimated. Economic costs: Trillions of dollars. Community recovery time: Years Nuclear Device (ND) Nuclear power plant accident /smaller yield vs larger yield/ air vs land detonation all have different outcomes, hundreds to 100,000 deaths, number of hospitalizations not estimated. Economic costs: Trillions of dollars. Community recovery time: Years. Source: Tofani A, Bartolozzi M. Ranking nuclear and radiological terrorism scenarios: The Italian case. Risk Analysis 2008;28(Oct):1431-44. Primary Occupational Hazards of IND

Prompt and Delayed Ionizing Radiation Initial prompt radiation from blast Nuclear Fallout Groundshine: gamma radiation exposure Nuclear contamination on skin and clothing: beta burns Inhalation of respirable fallout: radionuclide absorption Numerous Physical/Chemical Hazards Collapsed structures/rubble Heat/Fire Broken glass/sharp objects Downed power lines/Ruptured gas lines Impaired Communications (Secondary to EMP) Existing Guidance Education and Training Workers should have a basic understanding

of Health risks: Acute vs. long-term effects of exposure Radiation protection: Time, distance and shielding Radiation response zones: Restrict responder access Goals of Radiation Protection: First Responders Prevent acute (immediate) injuries and deaths due to short-term high-level radiation exposure (occurring over a few hours to a few days) Keep long-term effects (cancer) associated with lower levels of radiation exposure as low as reasonably achievable NCRP Commentary No. 19 Radiation Exposure Limits Safe response requires well defined limits for exposure to radiation OSHA: Sets occupational limit for radiation workers 50 milliSievert/yr

Enforceable by law Other U.S. organizations provide recommendations for emergency responders EPA recommendation: 250 milliSievert total exposure Balances risk of exposure with opportunity to perform life-saving activities or to maintain essential critical infrastructure exposure amount Acute Symptoms (Within 4 Hours) Excess Lifetime Risk of Fatal Cancer (rad) (%)

(%) 0.36 rad 0 0 All activities All activities during emergency Short-Term exposure Whole amount Body Dose Dose Absorbed Equivalent Dose (mSv) (mrem) 360

Emergency Activity Performed First Responder Condition Health Impact Audible Warning, Alarms & Consent (Minors and pregnant females have much lower limits) Ave. American annual dose from natural and background radiation 1000 10 mSv 1 rad 0

0.08 All activities All activities during emergency 5000 50 mSv 5 rad 0 0.4 All activities All activities during emergency 10000 100 mSv

10 rad 0 0.8 Protecting Major Property Where lower dose not practic able no adverse health effe cts threshold 25000 250 mSv 25 rad 0 2 Lifesaving or

protection of large populations Where lower dose not practic able Chronic range threashold 50000 500 mSv 50 rad 0 4 Lifesaving or protection of large populations Only on a volunteer basis to persons fully aware of risks involved

Sub Clinical Range "Decision Dose Level" ICS must prevent unintentially surpassing 100 rad 100000 1 Sv 100 rad 5-30 8 No go No go Onset of Vomiting Intentional excursion must be justified

150000 1.5 Sv 150 rad 40 12 No go No go Acute Radiation Syndrome Consent must be obtained in advance 200000 2 Sv 200 rad 60

16 No go No go Clincal Range 250000 2.5 Sv 250 rad 20 300 rad No go No go No go No go Exceed Clinical Range

d No go No go Exceed LD50 Range 60 No go No go >80 d No go No go 300000 600000 3 Sv 6 Sv

600 rad 750000 7.5 Sv 750 rad 1000000 10 Sv 1000 rad 75 100 100 24 >40 d

Env. Contamination Alarms level Sub LD50 Range Exceed Lethal Range Dosimeter Alarm Level = 10mRh Acute Exposure & Fatal Cancer Risk Dose (mrem) Percent 1,000 0.08 5,000 0.4 10,000 0.8

25,000* 2.0 EPA mrem dose limit for lifesaving actions (ie: a 2% chance of dying from cancer) 50,000 4.0 10,000 mrem dose extra 0.8% 1,000 survivors receive 10,000 mrem estimated 8 extra cancer deaths 200 cancer deaths from other causes 208 total cancer deaths Essential

Personal Protective Equipment Personal dosimetry Radiation detection equipment PPE (ideally certified for CBRN purposes) Communication equipment effective after Electromagnetic Pulse Medical Countermeasures for radiation injury Initial Radiation Detection: Suspicious Incident First emergency vehicles responding to a suspicious incident should be equipped with radiation-monitoring instruments These instruments should alarm at 10 mR/h (corresponding to the outer perimeter) NCRP Commentary No. 19 Contamination Detection First responders should have simple tools to identify the presence of contamination (both ground surface and personnel) 60,000 dpm/cm2 beta and gamma 6,000 dpm/cm2 alpha Corresponding to the outer perimeter Inner perimeter - risk of acute radiation

injury to emergency responders 10 R/h NCRP Commentary No. 19 Portal Monitors & Survey Meters A radiation survey meter is needed to: Detect radioactive material Measure radiation levels Survey personnel Initial Radiation Detection In a known radiological or nuclear incident First emergency responders should be equipped with unambiguously alarming personal radiation detectors Alarm at 10 R/h (corresponding to the inner perimeter) Alarm at 50 rad cumulative absorbed dose (corresponding to the decision dose) NCRP Commentary No. 19 Personal Dosimetry Pagers

Newer technologies measure the radiation dose rate, total dose, and remaining stay time for the responder, and may provide flashing display, audible and vibration alarms and data logging capabilities Ruggedized design for field use Canberra UltraRadiacPlus Radiation Detection Key Challenges for Responder Safety and Health Need for consensus on hazard exposure limits for emergency response EPA, DHS, NCRP, IAEA, CRCPD, ICRP OSHA limits not focused on emergency response Will emergency response exposure limits be realistic and practical? EPA Guidelines for Emergency Procedures*

(expected only once in a lifetime) * Minors and pregnant females have much lower limits Dose limit Emergency Activity Performed Condition 5,000 mrem All activities All activities during emergency 10,000 mrem Protecting major property 25,000 mrem Lifesaving or protection of

critical infrastructure More than 25,000 mrem Lifesaving or protection of large populations Where lower dose not practicable Where lower dose not practicable Only on a volunteer basis to persons fully aware of the risks involved. Acute Radiation Syndrome Pre-determined Responder Exposure Levels will reduce the risk from unintentional higher exposures. Earliest clinical signs = nausea and vomiting (at > 100 rad) Remove victims (including first responders who become victims) from the inner perimeter Decision Dose

50 rad (500mSv) to emergency responders Triggers decision on whether to withdraw an emergency responder from within or near (but outside) the inner perimeter during the early phase of response Triggers decision on whether to withdraw an emergency responder from within the outer perimeter after prolonged activities NCRP Commentary No. 19 (consistent with CRCPD HS-5 Task Force) Personal Protective Equipment Affords protection from Internal contamination: radioactive material entering the body via inhalation, ingestion, or open wounds External contamination: radioactive dust deposited on ones body First Receiver ~ PPE Contaminated Contaminated Soil Soil HEALTH THREAT FROM A NUCLEAR ACCIDENT

Contaminated Contaminated Air Air Contaminated Contaminated Water Water Environmental Radiation Radiation Contamination Contamination Radiation Radiation Exposure Exposure Exposure Exposure Burns Burns to to eyes/skin eyes/skin Molds/Allergens

Molds/Allergens Inhalation Inhalation GI GI Tract Tract ARS ARS Thyroid Thyroid Cancer Cancer Contaminated Contaminated Food Food Secondary Secondary Fires Fires Loss Loss of of Communications Communications Loss Loss of

of Essential Essential Services Services Nuclear Accident Accident Infrastructure Infrastructure Loss Loss of of Utilities Utilities Fires Fires and and Explosions Explosions Delays/ Delays/ Inability Inability to to Evacuate Evacuate Access

Access to to care care prohibited prohibited Trauma/Wounds Trauma/Wounds Burns Burns Radiation Radiation Blast Blast Maternal Maternal & & Neonatal Neonatal Chronic Disease Disease Chronic Burns/Smoke Burns/Smoke Inhalation Inhalation Exposure Exposure Loss

Loss of of Transportation Transportation Networks Networks Loss Loss of of Assets Assets Displacement Displacement Socio-Economic Socio-Economic Loss Loss of of Shelter Shelter Loss Loss of of Employment Employment Loss Loss of of Access Access

To To Food/Water Food/Water Meningitis Meningitis Measles Measles Malnutrition Malnutrition Dehydration Diarrhea Diarrhea Prototype for Zones to Handle Patients in Medical Facility at Mass Casualty Incident A baby is checked for radiation exposure after being decontaminated in Fukushima, Japan, Monday. [AP/YONHAP] CLEAN AREA BUFFER ZONE

CONTAMINATED AREA Treatment Area Layout ED Staff Radiati on Survey & Chartin g Contaminated Waste Waste Separa te Entran ce Trauma Room STEP

OFF PAD Radiatio n Survey Clean Gloves, Masks, Gowns, Booties HOT LINE Detecting and Measuring Radiation Instruments Locate contamination - GM Survey Meter (Geiger counter) Measure exposure rate - Ion Chamber Personal Dosimeters - Measure doses to staff Radiation Badge - Film/TLD Self-reading dosimeter

(analog and digital) Personal Protective Equipment (PPE) Personal Protective Equipment Civilian PPE Two classification systems used in the US Occupational Safety and Health Administration (OSHA) /Environmental Protection Agency (EPA) PPE ensemble classification system Level A (most protective) Level B Level C Level D (least protective) National Fire Protection Association (NFPA) PPE ensemble classification system Class 1 (most protective) Class 2 Class 3 Class 4 (least protective)

US Military PPE Mission Oriented Protective (MOPP) gear: six different readiness levels achieved by adding or removing individual MOPP gear ensemble components MOPP Ready [lowest level of readiness (i.e., no ensemble elements are worn)] MOPP 0 MOPP 1 MOPP 2 MOPP 3 MOPP 4 [highest level of readiness (i.e., all ensemble elements are worn)] Standard protective clothing Bunker/Turnout gear Level B Respiratory protection APR PAPR SCBA

CBRN: An abbreviation for chemicals, biological agents and radiological particulates hazards. CBRN Terrorism Agents: Chemicals, biological agents, radiological particulates which could be potentially released as an act of terrorism. (See Chemical Terrorism Agents, Biological Terrorism Agents, Radiological Particulate Terrorism Agents) Chemical Terrorism Agents: Liquid, solid, gaseous, and vapor chemical warfare agents and dual-use industrial chemicals used to inflict lethal or incapacitating casualties as a result of a terrorist attack. Biological Terrorism Incident: Liquid or particulate agents that can consist of biologically derived toxin or pathogen used to inflict lethal or incapacitating causalities as a result of a terrorist attack Radiological Particulate Terrorism Agents: Particles that emit ionizing radiation in excess of normal background levels used to inflict lethal or incapacitating casualties as a result of terrorist attack. CBRN Agents Definitions: C & B Chemical (gases, vapors, liquids, & particulates) Chemical warfare agents

Toxic industrial chemicals/Toxic industrial materials Biological (particulates) Micro organisms (disease-causing bacteria and viruses) and biological toxins Test Representative Agents for Air-Purifying Respirators 61 Organic vapor family (vapor pressures =

Select Agents/ WMD Particulate Biological Agents (USAMRIID and/or CDC Lists) Anthrax Brucellosis Glanders Pneumonic Plague Tularemia Q Fever Smallpox Venezuelan Equine Encephalitis Viral Hemorrhagic Fevers

T-2 Mycotoxins Botulism Ricin Staphylococcus Enterotoxin B CBRN Agents Definitions: R & N Radiological (particulates) Particulates carrying radiation dispersed by a radiological dispersive device (RDD) or dirty bomb IED Nuclear (particulates) Particulates carrying radiation dispersed from a detonation involving nuclear fuel, a nuclear weapon, or a weapons component Particulate Radiological\Nuclear Agents (USAMRIID and/or DOE Lists)

Hydrogen 3 Carbon 14 Phosphorous 32 Cobalt 60 Nickel 63 Strontium 90 Technetium 99m Iodine 131 Cesium 137 Promethium 147

Thallium 204 Radium 226 Thorium 232 Uranium 235 & 238 Plutonium 239 Americium 241 Technical Challenge Provide CBRN protection in a structural fire fighting ensemble Meet both NFPA 1971 (structural fire fighting) and NFPA 1994 (WMD/terrorism) Tested & Certified as a System! CBRN Protective Clothing Designations The Issue Encapsulating NFPA 1994 Class 1 (Level A) CBRN SCBA

Both OSHA Level B Ensembles SCBA Design & Tested to CBRN Hazard Based Performance Requirements NFPA 1994 Class 3 (Level C) CBRN APR Non-Encapsulating " Guidance on Emergency Responder Personal Protective Equipment (PPE) for Response to CBRN Terrorism Incidents NIOSH Publication No. 2008132, June 2008 Compares OSHA/EPA Protection Levels A, B, and C to DHS adopted PPE performance based standards for response to terrorism incidents involving

Chemical, Biological, Radiological, and Nuclear (CBRN) hazards " Guidance on Emergency Responder Personal Protective Equipment (PPE) for Response to CBRN Terrorism Incidents Ensemble description using performance-based standard(s) OSHA/EPA level NFPA 1991 (2005 Edition) worn with NIOSH CBRN SCBA A NFPA 1994 (2007 Edition) Class 2 worn with NIOSH CBRN SCBAB NFPA 1971 (2007 Edition) with CBRN option worn with NIOSH CBRN SCBAB NFPA 1994 (2007 Edition) Class 3 worn with NIOSH CBRN APR/PAPR C NFPA 1994 (2007 Edition) Class 4 worn with NIOSH CBRN APR/PAPR C NFPA 1951 (2007 Edition) CBRN technical rescue ensemble worn with NIOSH CBRN APR/PAPR C 43 Respiratory Protection The Department of Energy recommends full-face respiratory protection for entrance into a contaminated area. DOE/RW-0362 SR Office of Civilian Radiological Waste Management The respiratory threat can be eliminated by employing High Efficiency Particulate Air (HEPA) or P100 filters. Domestic Preparedness Technician-HAZMAT Course

The U.S. Army specifies a M40 full-face gas mask with a two-element canister containing (HEPA) filtration and ASZM-T Cooperite carbon filtration media. CBRN Air-Purifying Respirator All of the following conditions must be met Types of inhalation hazards and concentrations have been identified & Contaminant concentrations are non-IDLH CBRN canister is capable of removing the hazard Oxygen is known to be at least 19.5% by volume Canister change schedule is required for gas/vapors Major responder needs:

Create interchangeable conditions for canisters to use common threads Light weight, small size, left or right side can Canister interoperability Assembly with a canister other than specified in the approval assembly matrix is not in its NIOSH-approved configuration Decision to proceed with interoperability is the responsibility of the incident commander or other commanding authority under crisis conditions GAPS & Challenges First Responders and Receivers Identifying Gaps in Strategy Leadership Priorities Accountability Key Challenges for Responder Safety and Health Training and Education Few responders receive adequate training in radiation safety, and have little experience with radiation response Informed consent from individual responders will be required for those entering the hot zones

Research indicates potential reluctance of responders to respond to event involving significant radiation hazards Key Challenges for Responder Safety and Health Monitoring and Surveillance Area and Personal Monitoring Availability of dosimetry and radiation detection equipment Proper maintenance of existing equipment Blast-damaged equipment Long term surveillance and dose reconstruction Emergency Responders vs Radiation Workers Particularly in the Recovery phase State and Local Public Health Capability and Capacity to Respond to a Radiological/Nuclear Incident Response capability and capacity varies across state and local jurisdictions States with nuclear power plants: 31 states States with high risk metropolitan areas Inconsistent integration of radiation control programs with public health agencies

State radiation control programs reside in state public health agencies in 35 states Radiation control/expertise is found elsewhere with state government in remaining 15 states Challenges to Planning & Response for State, Local, Tribal, and Territorial Jurisdictions Lack of awareness public health responsibilities in radiological/nuclear emergencies Lack of funding Lack of subject matter expertise Lack of human resources for planning, exercises, and response Leadership brings it all together Prioritize: Focus efforts on the most important, most fruitful work. Synchronize: Get Departments, agencies, and partners working towards common goals. Anticipate: Do as much in advance of an incident as possible. Acknowledgements & Disclaimers

Many thanks for visual aids: 1. 2. 3. 4. 5. Jonathan Links PhD, Johns Hopkins University RADM Scott Deitchman, MD, NCEH LCDR John Halpin, MD, NIOSH Jon Szalajda & Roland BerryAnn, NPPTL, NIOSH DHS - Office for Domestic Preparedness Mention of the name of any company or product, or inclusion of any reference, does not constitute endorsement by the National Institute for Occupational Safety and Health. The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy Happy Birthday: Wilhelm Roentgen, German physicist who discovered X-Rays, born March 27, 1813


Recently Viewed Presentations

  • VASARI, MARC, ACOHIR and Viseum

    VASARI, MARC, ACOHIR and Viseum

    VASARI, MARC, ACOHIR and Viseum Advanced imaging systems Kirk Martinez Dept. of Electronics and Computer Science University of Southampton VASARI Visual Arts System for Archiving and Retrieval of Images European project - 1989 Aimed to make highest quality imaging system...
  • How Your Brain Thinks Thoughts Giuseppe Arcimboldo (1593,

    How Your Brain Thinks Thoughts Giuseppe Arcimboldo (1593,

    Brain Quiz Show! What are dendrites? ANSWER: the branching process of a nerve cell (neuron) that conducts impulses from other cells into its cell body. OR. The part of the neuron that receives messages from other cells.
  • Support Vector Machines

    Support Vector Machines

    Pooling layers between convolutional layers, to increase scale and extract higher-level features at each layer. End with several fully-connected layers to perform classification based off of the extracted features. ... Roger Ballard ...
  • Circulatory System Review Sheet 7A

    Circulatory System Review Sheet 7A

    The main job of the circulatory system is the get . oxygen. into the body and . carbon dioxide . out of the body. 2. The walls of the trachea are made up of rings of ... What does structure...
  • Spiritual and Ethical Fitness - Uniformed Services University ...

    Spiritual and Ethical Fitness - Uniformed Services University ...

    Spiritual fitness practice MUST work with and through the line and chaplains Definition of spiritual and ethical fitness A state in which one feels connected beyond oneself both horizontally and vertically, and which motivates one in life and enhances strength...
  • Running Record - Mrs. Conn

    Running Record - Mrs. Conn

    It is understood that reading is an interactive process in which the reader also comprehends the text. Marie Clay developed Running Record to record the reader's behavior and analyze the substitutions and self-corrections made while reading. Meaning, Structure, and Visual...
  • GrabCut in One Cut Meng Tang Lena Gorelick

    GrabCut in One Cut Meng Tang Lena Gorelick

    GrabCut in One Cut. Meng Tang Lena Gorelick Olga Veksler Yuri Boykov. Basic Segmentation Energy. L. 1. Color Separation Term. Application ...
  • Diapositive 1 - Espace des enseignants

    Diapositive 1 - Espace des enseignants

    Ma. Mon. Ma. Ma. Mes. ma serviette de bain, mes lunettes, mon shampooing … mon stylo, ma gomme, ma règle, mon dictionnaire, mon cahier, mes livres … sa mère