Don't look now! Parietal activity when the saccade goal ...

Don't look now! Parietal activity when the saccade goal ...

The oculomotor system Or Fear and Loathing at the Orbit Michael E. Goldberg, M.D. First you tell them what your gonna tell them The phenomenology of eye movements. The anatomy and physiology of the extraocular muscles and nerves. The supranuclear control of eye

movements: motor control and cognitive plans. The purposes of eye movements Keep an object on the fovea Fixation Smooth pursuit Keep the eyes still when the head moves Vestibulocular reflex Optokinetic reflex

Change what you are looking at ( move the fovea from one object to another) Saccade Change the depth plane of the foveal object Vergence eyes move in different directions The vestibuloocular reflex. The semicircular canals provide a head velocity signal. The vestibuloocular reflex (VOR) provides an equal and opposite

eye velocity signal to keep the eyes still in space when the head moves. The vestibular signal habituates, and is supplemented by vision the optokinetic response Smooth pursuit matches eye velocity to target velocity Saccades move the fovea to a new position

6 Muscles move the eyes Levator Palpebrae Superior Rectus Lateral Rectus Medial Rectus Superior Oblique Inferior Oblique Inferior Rectus How the single eye moves Horizontal: Abduction (away from the nose)

Adduction (toward the nose). Vertical: Elevation (the pupil moves up) Depression (the pupil moves down) Torsional: Intorsion: the top of the eye moves towards the nose Extorsion: the top of the eye moves towards the ear.

The obliques are counterintuitive Each oblique inserts behind the equator of the eye. The superior oblique rotates the eye downward and intorts it! The inferior oblique rotates the eye upward and extorts it. Vertical recti tort the

eye as well as elevate or depress it. Oblique action depends on orbital position The superior oblique depresses the eye when it is adducted (looking at the nose). The superior oblique intorts the eye when it is abducted

(looking towards the ear) 3 Cranial Nerves Control the Eye Levator Palpebrae Superior Rectus Inferior Rectus Medial Rectus Nerve III: Oculomotor

Inferior Oblique Superior Oblique Lateral Rectus Nerve IV: Trochlear Nerve VI: Abducens Left fourth nerve palsy Hyperopia in central gaze. Worse on right gaze.

Better on left gaze. Worse looking down to right Better looking up to right. Head tilt to right improves gaze. Head tilt to left worsens gaze. Listings Law Torsion must be constrained or else vertical lines would not remain vertical. Listings law accomplishes this: the axes

of rotation of the eye from any position to any other position lie in a single plane, Listings plane. This is accomplished by moving the axis of rotation half the angle of the eye movement The pulleys: something new in orbital anatomy and physiology. How is Listings law accomplished? Extraocular muscles have two layers A global layer that inserts on the sclera

An orbital layer that inserts on a collagenelastin structure between the orbit and globe. This structure serves as a PULLEY through which the global layer moves the eye. Moving the pulleys accomplish listings law. (Demer). Pulley Anatomy The pulleys Horizontal rectus pulleys change their position with

horizontal gaze. Eye muscle nuclei Mesencephalic Thalamus Reticular Formation Superior Colliculus Inferior Colliculus III IV

Cerebellum VI Pontine Nuclei Vestibular Nuclei Oculomotor neurons describe eye position and velocity. Lateral Eye position the step

Medial Eye velocity the pulse Medial - Lateral Eye Position Abducens neuron Sp/s Pulse

Step Neuron Abducens neuron The transformation from muscle activation to gaze The pulse of velocity and the step of position are generated independently. For horizontal saccades the pulse is generated in the paramedian pontine reticular formation.

The step is generated in the medial vestibular nucleus and the prepositus hypoglossi by a neural network that integrates the velocity signal to derive the position signal. Horizontal saccades are generated in the pons and medulla Thalamus Superior Colliculus Inferior Colliculus Medial longitudinal

fasciculus III IV Cerebellum Paramedian Pontine Reticular Formation Pontine Nuclei VI

Vestibular Nuclei and Nucleus Prepositus Hypoglossi Digression on Neural Integration Intuitively, you move your eyes from position to position (the step). Higher centers describe a saccadic position error. The pontine reticular formation changes the position error to a desired velocity (the

pulse). The vestibulo-ocular reflex also provides the desired velocity. In order to maintain eye position after the velocity signal has ended, this signal must be mathematically integrated. Neurons involved in the generation of a saccade ` Generating the horizontal gaze

signal The medial rectus of one eye and the lateral rectus of the other eye must be coordinated. This coordination arises from interneurons in the abducens nucleus that project to the contralateral medial rectus nucleus via the medial longitudinal fasciculus. Left lateral rectus Abducens nerve Paramedian

pontine reticular formation (saccade velocity) Abducens nucleus: motor neurons and interneurons. Medial vestibular nucleus: eye position, VOR and smooth

pursuit velocity . Right medial rectus Oculomotor nucleus and nerve: motor neurons only Medial longitudinal fasciculus

Nucleus prepositus hypoglossi (eye position) To reiterate Ocular motor neurons describe eye position and velocity. For smooth pursuit and the VOR the major signal is the velocity signal, which comes from the contralateral medial vestibular nucleus. The neural integrator in the medial vestibular nucleus and nucleus prepositus hypoglossi converts the velocity signal into a position signal which holds eye

position. For horizontal saccades the paramedian pontine reticular formation converts the position signal from supranuclear centers into a velocity signal. This signal is also integrated by the medial vestibular nucleus and the nucleus prepositus hypoglossi. Abducens interneurons send the position and velocity signals to the oculomotor nucleus via the medial longitudinal fasciculus. Vertical movements and vergence are organized in the midbrain Mesencephalic

Thalamus Reticular Formation Posterior commissure Superior Colliculus Inferior Colliculus rIMLF III Medial Longitudinal Fasciculus

Paramedian Pontine Reticular Formation Pontine Nuclei IV Cerebellum VI Vestibular Nuclei

Internuclear ophthalmoplegia The medial longitudinal fasciculus is a vulnerable fiber tract. It is often damaged in multiple sclerosis and strokes. The resultant deficit is internuclear ophthalmoplegia The horizontal version signal cannot reach the medial rectus nucleus, but the convergence signal can. Supranuclear control of saccades

The brainstem can make a rapid eye movement all by itself (the quick phase of nystagmus). The supranuclear control of saccades requires controlling the rapid eye movement for cognitive reasons. In most cases saccades are driven by attention Humans look at where they attend

Supranuclear control of saccades Supplementary Eye Field Posterior Parietal Cortex Frontal Eye Field Caudate Nucleus Superior Colliculus Substantia Nigra Pars Reticulata Reticular Formation

Supranuclear Control of Saccades Superior colliculus drives the reticular formation to make contralateral saccades. The frontal eye fields and the parietal cortex drive the colliculus. The parietal cortex provides an attentional signal and the frontal eye fields a motor signal. The substantia nigra inhibits the colliculus unless It is inhibited by the caudate nucleus Which is, in turn, excited by the frontal eye field.

The effect of lesions Monkeys with collicular or frontal eye field lesions make saccades with a slightly longer reaction time. Monkeys with combined lesions cannot make saccades at all. Humans with parietal lesions neglect visual stimuli, and make slightly hypometric saccades with longer reaction times. Often their saccades are normal: if they can see it they can make saccades to it. Humans with frontal lesions cannot make

antisaccades. The Antisaccade Task The Antisaccade Task Look away from a stimulus. The parietal cortex has a powerful signal describing the attended stimulus. The colliculus does not respond to this signal. The frontal motor signal drives the eyes away from the stimulus. Patients with frontal lesions cannot

ignore the stimulus, but must respond to the parietal signal Antisaccades Supplementary Eye Field Posterior Parietal Cortex Frontal Eye Field Caudate Nucleus Superior Colliculus Substantia Nigra Pars Reticulata

Reticular Formation Supranuclear control of pursuit: pursuit matches eye velocity to target velocity Middle temporal and middle Frontal Eye Field provides the trigger to start the pursuit. superior temporal (MT and MST) provide the velocity signal Striate Cortex

Dorsolateral pontine nuclei Vestibular nucleus Cerebellum vermis and flocculus Smooth pursuit Requires cortical areas that compute target velocity, the

dorsolateral pontine nuclei, and the cerebellum. Utilizes many of the brainstem structures for the vestibuloocular reflex Requires attention to the target. Clinical deficits of smooth pursuit Cerebellar and brainstem disease Specific parietotemporal or frontal lesions Any clinical disease with an

attentional deficit Alzheimers or any frontal dementia, schizophrenia

Recently Viewed Presentations

  • Plants Spice Things Up! - Seneca Valley School District

    Plants Spice Things Up! - Seneca Valley School District

    Plants Spice Things Up! * * * * * * * * * * * * What is a spice? A vegetable production, fragrant or aromatic to the smell and pungent to the taste. Used in cookery; derived from parts...
  • SAF DRIVES AND AUTOMATION SAF Drive Systems is

    SAF DRIVES AND AUTOMATION SAF Drive Systems is

    SAF DRIVES AND AUTOMATION SAF Drive Systems is internationally renowned as a specialist in drive systems and motor control, and for good reason. SAF offers custom, state-of-the-art solutions to drive challenges, large and small. SAF can offer anything from "off...
  • Multi-Core CPUs

    Multi-Core CPUs

    Multi-Core CPUs Matt Kuehn Roadmap Intel vs AMD Early multi-core processors Threads vs Physical Cores Multithreading and Multi-core processing Current development direction Passmark benchmarks Conclusion Intel Founded July 1968 Integrated Electronics Largest provider of CPUs Inventor of the x86 architecture...
  • Ch. 1 Section 1 - Hardin-Jefferson High School

    Ch. 1 Section 1 - Hardin-Jefferson High School

    Ch. 1 Section 1 Why Study Psychology? Obj: Identify the goals of psychology, and explain how psychology is a science. What do you hope to learn from the study of psychology? Perhaps you hope to gain a better understanding of...
  • Kein Folientitel

    Kein Folientitel

    IBLC-Vortrag 20.10.2000 Buchmesse Frankfurt Problemstellung Publikationen in Mathematik und Physik Beispiel: keywords RDF - long example Ziele AP9 Prototyp für verteiltes, interdisziplinäres Informationssystem automatische Generierung der Konkordanz zwischen MSC und PACS Vergleich zwischen ...
  • Social Link Presentation

    Social Link Presentation

    "Household Incomes in New Zealand: Trends in Indicators of Inequality and Hardship 1982 to 2015," (Wellington: Ministry of Social Development, 2016), Table C.3, 55: Proportion of households with housing cost OTIs greater than 30%, by income quintile.
  • Penyelenggaraan Rekod Akaun Deposit

    Penyelenggaraan Rekod Akaun Deposit

    senarai baki pendeposit (sbp) senarai baki pendeposit kod jabatan : kod pusat tanggungjawab : kod akaun deposit : bil nama pendeposit tarikh kutipan/tempoh pegangan nombor penyata pemungut nombor resit amaun 1. norhayati binti ibnu 12.12.1955 d1233 a1234 50.00 2. rahimah...
  • Chapter 19 Java Data Structures

    Chapter 19 Java Data Structures

    A binary tree is a data structure to support searching, sorting, inserting, and deleting data efficiently. Lists A list is a popular data structure to store data in sequential order. For example, a list of students, a list of available...